
Recent compositions and performance instruments realized in
Java Music Specification Language

Nick Didkovsky
didkovn@mail.rockefeller.edu

www.algomusic.com

Abstract

Java Music Specification Language (JMSL, Didkovsky,
Burk) is a Java API for algorithmic music composition and
performance. This paper presents an overview of three
recent pieces realized in JMSL. The works included here
demonstrate a wide range of what JMSL offers the
composer and performer, including real-time interactive
score generation (Zero Waste for sight reading pianist and
computer), physical instrument modeling for compositional
purposes (Tube Mouth Bow String for string quartet and
live electronics), and the creation of intelligent, real-time
performance instruments (Virtual Rhythmicon, based on the
Henry Cowell’s Rhythmicon).

1 Introduction
JMSL has been used to create a wide variety of new

computer music works. Zero Waste, for sight reading
pianist and computer, challenges the performer to sight-read
a score in common music notation which is generated in
real-time. The Virtual Rhythmicon models an early
electronic music instrument designed by Henry Cowell, and
runs as an applet in a web browser. Tube Mouth Bow
String, for string quartet and live electronics, uses JMSL to
model the sonics of the ensemble and algorithmically
generate a final notated score. JMSL is available at
www.algomusic.com.

2 Zero Waste, for sight reading pianist
and computer generated score

Zero Waste uses JMSL to generate a score in common
music notation which is sight-read by the live performer.
There is no computer generation of audio; the audience
hears only a live grand piano and sees a large projection of
the score that is being read by the performer. A piano
capable of sending MIDI is required, such as the Yamaha
Diskclavier, so that the computer can receive real-time
performance data. As the performer sight reads, JMSL
transcribes and notates. This continuous loop of
performance and transcription generates a score in real-time.
Zero Waste was composed by the author for pianist
Kathleen Supové.

2.1 Description
Zero Waste begins by displaying two measures of

stochastically generated music. The performer views the
score on a laptop computer which is situated before her on
the piano. As soon as she begins playing, JMSL begins
recording her MIDI performance data. As soon as the
performance of measures 1 and 2 is complete, JMSL
transcribes the performance and displays it as measures 3
and 4. The performer continues sight reading, now
performing measures 3 and 4. At the end of these two
measures, JMSL once again displays a transcription of her
performance, displayed as measures 5 and 6. This process of
sight-reading and transcription continues for the twelve-
minute duration of the piece.

Zero Waste amplifies the resonances of a system which
is characterized by the limitations of human performance
and common music notation. If the performer were perfect,
and if music transcription and notation were both
theoretically and practically perfect, then Zero Waste would
consist of identical repetitions of the first two measures. Of
course, no sight reader is perfect, and notation must strike a
balance between readability and absolute accuracy, so each
new pair of measures diverges and evolves a bit more from
the last.

Figure 1 Zero Waste begins with two measures of

algorithmically generated music (top). Measures 3 and 4
(middle) are transcriptions of the live performance of

measures 1 and 2. The last two measures of the piece are
displayed at the bottom of the figure.

2.2 Some observations
Systematic tendencies were consistently observed over

multiple performances. The transcribed rhythm deviates
almost immediately from the original (see figure 1). As
performer Kathleen Supove described it, the expressive
qualities of interpretation suddenly took on major notational
and compositional consequences. Also evident immediately
is that pitches which fall outside reasonable reach are lost.

One curious tendency is the gradual appearance of rests
at the beginning and end of each two-measure system. This
was due to the slight performance hesitation caused by not
being able to read ahead to the next two measures, since
they can not be displayed until the performance of the
current two measures is completed. This minute pause will
be notated as a rest. The performer’s rush to catch up might
finish the material a little early, resulting in a rest appearing
at the end. Once notated, the performer is of course obliged
to perform these rests; they become an essential part of the
piece.

Countering this effect is the occasional intent of the
performer to slow down for expressive purposes. This
might result in the notes at the end of one two-measure
frame spilling over into the beginning of the next two-
measure frame. The next transcription will then begin with
the notes left over from the previous transcription, and the
head of the measure begins to fill in again.

Another pair of contrary forces became evident: the
formation of chord clusters and their dissolution. Chords
form when the timestamps of two notes are attracted to the
same quantized time point. Once notated as a chord, the
performer is obliged to continue performing the chord, so
there seems no escape back to melody. However, the
performer's hands are too small to perform all the notes
contained in very tall chord clusters. Her performance
strategy was to split these chords into multiple events.
These sub-events might be transcribed as smaller chords and
monophonic notes. In this way, the clumping tendency of
the system has a natural counter-effect.

2.3 Summary
Some audience members likened Zero Waste to the

game of "telephone", where a story is passed through a
sequence of people, each of whom hears the story from one
neighbor and retells it to the next. Like the telephone game,
Zero Waste behaves as an information filter. The focus is on
the process of change, and what it reveals about the
dynamics of the system. JMSL’s notator, transcriber, and
MIDI support provided the author with an elegant real-time
API with which to realize this work.

3 The Virtual Rhythmicon
The Rhythmicon (Cowell) is an early electronic music

instrument designed by Henry Cowell and built by Leon
Theremin in 1930. It has seventeen keys. Each key

corresponds to a partial in the harmonic series, and plays a
pitch with a steady, repeated pulse. The first key plays a
low fundamental frequency at a slow tempo. The second
key plays twice the frequency at twice the tempo, and so on.
By holding down keys simultaneously, complex
polyrhythms can be realized.

In 2003 Minnesota Public Radio commissioned the
author to create a software realization of Cowell's
Rhythmicon, to be deployed on the web. JMSL was chosen
as an appropriate technology because of its flexible
scheduler and its web capabilities. JSyn (Java Synthesizer,
Burk) was chosen as the audio engine, due its ability to
perform real-time CD quality audio in a web browser and its
Java API. In May of 2003, The Virtual Rhythmicon was
launched on MPR's Music Mavericks website
(http://www.musicmavericks.org/rhythmicon/).

3.1 Design
Essential design features in Cowell's original

Rhythmicon were maintained: each key corresponds to a
partial, multiple keys can be performed simultaneously, the
fundamental frequency can be changed, and the overall
tempo can be changed.

Figure 2. The Virtual Rhythmicon control panel. Three

keys are shown to be sounding here, corresponding to the
fundamental, the seventh, and the 19.5th partials.

The Virtual Rhythmicon adds a number of innovations

to the original design. The user can play up to four
Rhythmicons at a time. This affords the possibility of very
complex and beautiful pitch and time relationships between
Rhythmicons.

The user can change the timbre of any Rhythmicon by
choosing from various synthesis patches. The evenness of
the rhythm can also be varied, ranging from strict regularity
to very irregular. This is implemented with a Myhill
Distribution (Ames), which distributes events over time
using an entry delay mechanism, and provides control over
the evenness of this distribution.

The Virtual Rhythmicon offers extensive control over
every key. The composer can assign any partial value to a
key, including non-integer partials. The overall amplitude
and stereo panning of the key can also be specified and
changed over time. Attack and release rates of the

synthesized notes can be controlled. A scaler specifies
sustain length as a fraction of a pulse's duration,
corresponding roughly to notions of staccato and legato.
Finally, any Virtual Rhythmicon key can be assigned to any
computer key. The user can construct groupings of
Rhythmicon keys to be triggered by the same key-press,
creating complex behaviors and rhythmic relationships that
are easily recalled in performance.

Figure 3. The Rhythmicon Key Editor allows the composer

to control the attributes of a key.

3.2 Community composition
Minnesota Public Radio’s commitment to public access

and its strong sense of community required that users be
able to record and upload performances to a public server.
Archived performances ought to be publicly available for
play-back. These client/server features were included in the
Virtual Rhythmicon.

When the user starts recording, all GUI events and
corresponding timestamps are captured. The "Command
Design Pattern" (Gamma et al) is used to implement this
feature, where user events are encapsulated as objects and
stored. As opposed to simply capturing note-level musical
output, Virtual Rhythmicon play-back controls the
Rhythmicon itself with "ghost hands". The user sees keys
turn on and off, partial values change, amplitude contours
altered, etc. This also enables the user to play along with
the performance, record a composite, and upload a
derivative work. Uploads, downloads, and searches of
Virtual Rhythmicon performances are managed by a
MySQL database and PHP scripts residing on the server.
The user can email a performance to a friend: the recipient
receives an email message with a link to the composition.

3.3 Summary
JMSL provides an elegant scheduling model appropriate

for the Virtual Rhythmicon. MusicJobs were used to
implement the individual key pulses. Multiple MusicJobs
were put into a ParallelCollection to ensure that they would
start and stop together, following a master clock. JMSL's
tight integration with JSyn made it straightforward to
implement a unified Instrument interface with common

control over envelope, pan, sustain, and amplitude, and
populate it with various SynthNotes that realize different
timbres.

JMSL's Java foundation allowed the author to leverage
off of popular object oriented design techniques such as the
Command Design Pattern. Java's ability to run in a web
browser and send data to and from a server made it
straightforward to deploy the Virtual Rhythmicon on the
web, where thousands of users have performed it and
accessed its growing public archive.

4 Tube Mouth Bow String, for string
quartet and live electronics

Tube Mouth Bow String is an algorithmically generated
composition for string quartet and live electronics. The role
of the software is to model the ensemble and generate a
score. There is no computer component to the performance;
the live electronics are commercially available devices. Four
talk-boxes are used to modulate the sound of the string
quartet with vowels mouthed by the performers. Four foot
pedals are used to create harmonic glissandi.

Tube Mouth Bow String was algorithmically generated,
transcribed to common music notation using JMSL's
Transcriber class, notated in JScore, and exported from
JScore to San Andreas Press’s Score for final publication.
Tube Mouth Bow String was composed by the author for
The Sirius String Quartet, and was supported by a grant
from Meet the Composer's Commissioning Music/USA
program.

4.1 Modeling the ensemble
Each live performer's instrument has a contact

microphone whose output is connected to a harmonizer
pedal. The pedal harmonizes the input signal ranging from
an octave below pitch in the heel position, to an octave
above in the toe position. This harmonization smoothly
glisses as the pedal is moved. The output of the harmonizer
pedal is connected to a talkbox which contains a small
amplifier and speaker whose output is piped through a
polyvinyl tube terminating in the performer’s mouth. As the
performer mutely mouths various vowels, the signal is
filtered by the shape of the oral cavity. This filtered sound is
amplified with a vocal microphone and public address
system.

The composer wanted to play with these resources in a
flexible way during the composition process. JMSL and
JSyn were extremely useful tools here, as JSyn was able to
mimic the sound of the quartet vividly, while JMSL
managed high level compositional form.

In order to model the ensemble in software, three
components were needed: synthesis of a bowed string, a
harmonizer patch, and a vowelization filter. These were
modeled in JSyn and encapsulated in higher level JMSL
Instrument classes.

Bowed strings were modeled in a straightforward way
using JMSL's TransposingSampleSustainingInstrument
class. A convincing virtual string quartet was assembled by
loading four such instruments with commercially available
bowed string samples.

The harmonizer pedal was modeled as a JMSL
Instrument implementing the PlayLurker interface.
PlayLurkers can be notified of performance data being
played by other objects. For this piece, the harmonizing
instrument receives notification whenever a bowed string
plays a note. It reads the pitch value contained in the data,
and calculates the frequency of the harmony. The
instrument sounds the harmony with a sawtooth oscillator
which achieves a convincing harmonization when mixed
with the original bowed string sample. This was more
efficient and reliable than implementing a true pitch tracker
and a pitch shifter.

A vowelization filter was designed in JSyn by James
Forrest using multiple bandpass filters (Dodge). This filter
was encapsulated in a JMSL instrument.

 4.2 Notation
Each musician reads three staves: the top staff notates

the vowels, the middle staff notates bowed strings, and the
bottom staff notates pedal positions (see figure 4).

The full sweep of the harmonizer pedal is broken down
into seven distinct positions: heel, toe, and middle position,
plus four intermediate positions: two between middle and
toe, and two between middle and heel. These locations
were notated on seven distinct staff positions.

The difficulty in performing Tube Mouth Bow String
derives from the complete independence between the three
parts that each player must execute. Over time, the players
became facile with this independence.

4.3 Comments on form
Over the course of twelve minutes, the pitches of the

bowed strings follow a statistically interpolated trajectory
from low harmonic complexity (unison pitch) to high
harmonic complexity, then back to unison, resulting in an
ending rich with cadence-like gestures. Event density of
talk-box material begins with long sustained vowels and
ends with dense rhythmic vowel cycles. Pedal moves are
slow and sparse at beginning and end of the work, reaching
peak density in the middle.

The piece specifies rhythmic correlations between pairs
of players. The two violins’ pedal glissandi are in rhythmic
unison but gliss in contrary motion. Viola and 'cello are
similarly paired. Violin 1 and viola share the same vowel
rhythms; violin 2 and 'cello form the other vowel pair.
These pairings provide internal coherence, which along with
the large scale shaping of the piece, provides the listener
with a number of different focal points of attention.

Whammy 4Whammy 4Whammy 4Whammy 4

CelloCelloCelloCello

Vowels 4Vowels 4Vowels 4Vowels 4

3

Uh O E Oo Er E

3

U O Er A E U O

Whammy 3Whammy 3Whammy 3Whammy 3

ViolaViolaViolaViola

Vowels 3Vowels 3Vowels 3Vowels 3

(O) I

3

OoU Er O I Oo U Er O I Oo

Whammy 2Whammy 2Whammy 2Whammy 2

Violin 2Violin 2Violin 2Violin 2

Vowels 2Vowels 2Vowels 2Vowels 2

3

U E Uh I Oo U

3

E Uh I Oo U E Uh

Whammy 1Whammy 1Whammy 1Whammy 1

Violin 1Violin 1Violin 1Violin 1

Vowels 1Vowels 1Vowels 1Vowels 1

14

66

(Uh) Er

3

A E I Uh Er A E I Uh Er A

Ped. gliss. Ped. gliss.

Ped. gliss.
Ped. gliss.

Ped. gliss.

Ped. gliss.

Ped. gliss.

Ped. gliss.

Tube Mouth Bow String

Figure 4. Vowel rhythms, bowed strings, and pedal

positions are notated on separate staves.

5 Conclusion
The three pieces described in this paper have very

different goals and aesthetic directions, including real time
score generation, digital online performance, instrument
modeling, and algorithmic composition. JMSL provides an
API that is fluid enough to embrace the very different
musical worlds defined by these pieces.

6 References
Ames, C., (1994). "A Catalog of Statistical Distributions: Techniques for

Transforming Random, Determinate and Chaotic Sequences,"
Leonardo Music Journal, Vol. 1, No. 1, pp. 55-70

Burk, P.L., (1998). "JSyn - A Real-time Synthesis API for Java."
Proceedings of the International Computer Music Conference.
International Computer Music Association, pp. 252-255.

Cowell, H., "Preface". Quartet Romantic; Quartet Euphometric. New
York: C. F. Peters, 1974

Didkovsky, N., Burk, P.L., (2001). "Java Music Specification Language, an
introduction and overview" Proceedings of the International
Computer Music Conference. International Computer Music
Association, pp. 123-126.

Dodge, C., Jerse, T., (1985). Computer Music. Synthesis, Composition, and
Performance. Schirmer Books, pp. 204-205.

Gamma, E., Helm, R., Johnson, R., Vlissides, J., (1995). Design Patterns.
Elements of Reusable Object-Oriented Software, Addison-Wesley
Professional Computing Series, pp.233-242

