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Abstract 

Java Music Specification Language (JMSL, Didkovsky, 
Burk) is a Java API for algorithmic music composition and 
performance.  This paper presents an overview of three 
recent pieces realized in JMSL.  The works included here 
demonstrate a wide range of what JMSL offers the 
composer and performer, including real-time interactive 
score generation (Zero Waste for sight reading pianist and 
computer), physical instrument modeling for compositional 
purposes (Tube Mouth Bow String for string quartet and 
live electronics), and the creation of intelligent, real-time 
performance instruments (Virtual Rhythmicon, based on the 
Henry Cowell’s Rhythmicon). 

1 Introduction 
JMSL has been used to create a wide variety of new 

computer music works.  Zero Waste, for sight reading 
pianist and computer, challenges the performer to sight-read 
a score in common music notation which is generated in 
real-time.  The Virtual Rhythmicon models an early 
electronic music instrument designed by Henry Cowell, and 
runs as an applet in a web browser. Tube Mouth Bow 
String, for string quartet and live electronics, uses JMSL to 
model the sonics of the ensemble and algorithmically 
generate a final notated score. JMSL is available at 
www.algomusic.com. 

2 Zero Waste, for sight reading pianist 
and computer generated score 

Zero Waste uses JMSL to generate a score in common 
music notation which is sight-read by the live performer.  
There is no computer generation of audio; the audience 
hears only a live grand piano and sees a large projection of 
the score that is being read by the performer. A piano 
capable of sending MIDI is required, such as the Yamaha 
Diskclavier, so that the computer can receive real-time 
performance data.  As the performer sight reads, JMSL 
transcribes and notates.  This continuous loop of 
performance and transcription generates a score in real-time. 
Zero Waste was composed by the author for pianist 
Kathleen Supové. 

2.1 Description 
Zero Waste begins by displaying two measures of 

stochastically generated music.  The performer views the 
score on a laptop computer which is situated before her on 
the piano.  As soon as she begins playing, JMSL begins 
recording her MIDI performance data. As soon as the 
performance of measures 1 and 2 is complete, JMSL 
transcribes the performance and displays it as measures 3 
and 4.  The performer continues sight reading, now 
performing measures 3 and 4.  At the end of these two 
measures, JMSL once again displays a transcription of her 
performance, displayed as measures 5 and 6. This process of 
sight-reading and transcription continues for the twelve-
minute duration of the piece.  

Zero Waste amplifies the resonances of a system which 
is characterized by the limitations of human performance 
and common music notation.  If the performer were perfect, 
and if music transcription and notation were both 
theoretically and practically perfect, then Zero Waste would 
consist of identical repetitions of the first two measures.  Of 
course, no sight reader is perfect, and notation must strike a 
balance between readability and absolute accuracy, so each 
new pair of measures diverges and evolves a bit more from 
the last. 

 
Figure 1 Zero Waste begins with two measures of 

algorithmically generated music (top).  Measures 3 and 4 
(middle) are transcriptions of the live performance of 

measures 1 and 2.  The last two measures of the piece are 
displayed at the bottom of the figure. 



2.2 Some observations 
Systematic tendencies were consistently observed over 

multiple performances. The transcribed rhythm deviates 
almost immediately from the original (see figure 1). As 
performer Kathleen Supove described it, the expressive 
qualities of interpretation suddenly took on major notational 
and compositional consequences. Also evident immediately 
is that pitches which fall outside reasonable reach are lost.  

One curious tendency is the gradual appearance of rests 
at the beginning and end of each two-measure system.  This 
was due to the slight performance hesitation caused by not 
being able to read ahead to the next two measures, since 
they can not be displayed until the performance of the 
current two measures is completed.  This minute pause will 
be notated as a rest.  The performer’s rush to catch up might 
finish the material a little early, resulting in a rest appearing 
at the end.  Once notated, the performer is of course obliged 
to perform these rests; they become an essential part of the 
piece. 

Countering this effect is the occasional intent of the 
performer to slow down for expressive purposes.  This 
might result in the notes at the end of one two-measure 
frame spilling over into the beginning of the next two-
measure frame.  The next transcription will then begin with 
the notes left over from the previous transcription, and the 
head of the measure begins to fill in again. 

Another pair of contrary forces became evident: the 
formation of chord clusters and their dissolution. Chords 
form when the timestamps of two notes are attracted to the 
same quantized time point. Once notated as a chord, the 
performer is obliged to continue performing the chord, so 
there seems no escape back to melody.  However, the 
performer's hands are too small to perform all the notes 
contained in very tall chord clusters. Her performance 
strategy was to split these chords into multiple events.  
These sub-events might be transcribed as smaller chords and 
monophonic notes.  In this way, the clumping tendency of 
the system has a natural counter-effect. 

2.3 Summary 
Some audience members likened Zero Waste to the 

game of "telephone", where a story is passed through a 
sequence of people, each of whom hears the story from one 
neighbor and retells it to the next.  Like the telephone game, 
Zero Waste behaves as an information filter. The focus is on 
the process of change, and what it reveals about the 
dynamics of the system. JMSL’s notator, transcriber, and 
MIDI support provided the author with an elegant real-time 
API with which to realize this work. 

3 The Virtual Rhythmicon 
The Rhythmicon (Cowell) is an early electronic music 

instrument designed by Henry Cowell and built by Leon 
Theremin in 1930.  It has seventeen keys. Each key 

corresponds to a partial in the harmonic series, and plays a 
pitch with a steady, repeated pulse.  The first key plays a 
low fundamental frequency at a slow tempo.  The second 
key plays twice the frequency at twice the tempo, and so on.  
By holding down keys simultaneously, complex 
polyrhythms can be realized. 

In 2003 Minnesota Public Radio commissioned the 
author to create a software realization of Cowell's 
Rhythmicon, to be deployed on the web.  JMSL was chosen 
as an appropriate technology because of its flexible 
scheduler and its web capabilities.  JSyn (Java Synthesizer, 
Burk) was chosen as the audio engine, due its ability to 
perform real-time CD quality audio in a web browser and its 
Java API. In May of 2003, The Virtual Rhythmicon was 
launched on MPR's Music Mavericks website                     
( http://www.musicmavericks.org/rhythmicon/ ).   

3.1 Design 
Essential design features in Cowell's original 

Rhythmicon were maintained: each key corresponds to a 
partial, multiple keys can be performed simultaneously, the 
fundamental frequency can be changed, and the overall 
tempo can be changed.  

 
Figure 2. The Virtual Rhythmicon control panel.  Three 

keys are shown to be sounding here, corresponding to the 
fundamental, the seventh, and the 19.5th partials. 

 
The Virtual Rhythmicon adds a number of innovations 

to the original design.  The user can play up to four 
Rhythmicons at a time.  This affords the possibility of very 
complex and beautiful pitch and time relationships between 
Rhythmicons. 

The user can change the timbre of any Rhythmicon by 
choosing from various synthesis patches. The evenness of 
the rhythm can also be varied, ranging from strict regularity 
to very irregular. This is implemented with a Myhill 
Distribution (Ames), which distributes events over time 
using an entry delay mechanism, and provides control over 
the evenness of this distribution. 

The Virtual Rhythmicon offers extensive control over 
every key. The composer can assign any partial value to a 
key, including non-integer partials. The overall amplitude 
and stereo panning of the key can also be specified and 
changed over time. Attack and release rates of the 



synthesized notes can be controlled. A scaler specifies 
sustain length as a fraction of a pulse's duration, 
corresponding roughly to notions of staccato and legato.  
Finally, any Virtual Rhythmicon key can be assigned to any 
computer key.  The user can construct groupings of 
Rhythmicon keys to be triggered by the same key-press, 
creating complex behaviors and rhythmic relationships that 
are easily recalled in performance. 

 
Figure 3. The Rhythmicon Key Editor allows the composer 

to control the attributes of a key. 

3.2 Community composition 
Minnesota Public Radio’s commitment to public access 

and its strong sense of community required that users be 
able to record and upload performances to a public server. 
Archived performances ought to be publicly available for  
play-back. These client/server features were included in the 
Virtual Rhythmicon. 

When the user starts recording, all GUI events and 
corresponding timestamps are captured. The "Command 
Design Pattern" (Gamma et al) is used to implement this 
feature, where user events are encapsulated as objects and 
stored. As opposed to simply capturing note-level musical 
output, Virtual Rhythmicon play-back controls the 
Rhythmicon itself with "ghost hands". The user sees keys 
turn on and off, partial values change, amplitude contours 
altered, etc.  This also enables the user to play along with 
the performance, record a composite, and upload a 
derivative work. Uploads, downloads, and searches of 
Virtual Rhythmicon performances are managed by a 
MySQL database and PHP scripts residing on the server.  
The user can email a performance to a friend: the recipient 
receives an email message with a link to the composition.  

3.3 Summary 
JMSL provides an elegant scheduling model appropriate 

for the Virtual Rhythmicon.  MusicJobs were used to 
implement the individual key pulses.  Multiple MusicJobs 
were put into a ParallelCollection to ensure that they would 
start and stop together, following a master clock.  JMSL's 
tight integration with JSyn made it straightforward to 
implement a unified Instrument interface with common 

control over envelope, pan, sustain, and amplitude, and 
populate it with various SynthNotes that realize different 
timbres. 

JMSL's Java foundation allowed the author to leverage 
off of popular object oriented design techniques such as the 
Command Design Pattern. Java's ability to run in a web 
browser and send data to and from a server made it 
straightforward to deploy the Virtual Rhythmicon on the 
web, where thousands of users have performed it and 
accessed its growing public archive. 

4 Tube Mouth Bow String, for string 
quartet and live electronics 

Tube Mouth Bow String is an algorithmically generated 
composition for string quartet and live electronics. The role 
of the software is to model the ensemble and generate a 
score. There is no computer component to the performance; 
the live electronics are commercially available devices. Four 
talk-boxes are used to modulate the sound of the string 
quartet with vowels mouthed by the performers. Four foot 
pedals are used to create harmonic glissandi.  

Tube Mouth Bow String was algorithmically generated, 
transcribed to common music notation using JMSL's 
Transcriber class, notated in JScore, and exported from 
JScore to San Andreas Press’s Score for final publication. 
Tube Mouth Bow String was composed by the author for 
The Sirius String Quartet, and was supported by a grant 
from Meet the Composer's Commissioning Music/USA 
program.    

4.1 Modeling the ensemble 
Each live performer's instrument has a contact 

microphone whose output is connected to a harmonizer 
pedal. The pedal harmonizes the input signal ranging from 
an octave below pitch in the heel position, to an octave 
above in the toe position. This harmonization smoothly 
glisses as the pedal is moved.  The output of the harmonizer 
pedal is connected to a talkbox which contains a small 
amplifier and speaker whose output is piped through a 
polyvinyl tube terminating in the performer’s mouth.  As the 
performer mutely mouths various vowels, the signal is 
filtered by the shape of the oral cavity. This filtered sound is 
amplified with a vocal microphone and public address 
system. 

The composer wanted to play with these resources in a 
flexible way during the composition process. JMSL and 
JSyn were extremely useful tools here, as JSyn was able to 
mimic the sound of the quartet vividly, while JMSL 
managed high level compositional form. 

In order to model the ensemble in software, three 
components were needed: synthesis of a bowed string, a 
harmonizer patch, and a vowelization filter. These were 
modeled in JSyn and encapsulated in higher level JMSL 
Instrument classes. 



Bowed strings were modeled in a straightforward way 
using JMSL's TransposingSampleSustainingInstrument 
class.  A convincing virtual string quartet was assembled by 
loading four such instruments with commercially available 
bowed string samples. 

The harmonizer pedal was modeled as a JMSL 
Instrument implementing the PlayLurker interface.  
PlayLurkers can be notified of performance data being 
played by other objects. For this piece, the harmonizing 
instrument receives notification whenever a bowed string 
plays a note.  It reads the pitch value contained in the data, 
and calculates the frequency of the harmony.  The 
instrument sounds the harmony with a sawtooth oscillator 
which achieves a convincing harmonization when mixed 
with the original bowed string sample. This was more 
efficient and reliable than implementing a true pitch tracker 
and a pitch shifter. 

A vowelization filter was designed in JSyn by James 
Forrest using multiple bandpass filters (Dodge). This filter 
was encapsulated in a JMSL instrument. 

  4.2 Notation 
Each musician reads three staves: the top staff notates 

the vowels, the middle staff notates bowed strings, and the 
bottom staff notates pedal positions (see figure 4). 

The full sweep of the harmonizer pedal is broken down 
into seven distinct positions: heel, toe, and middle position, 
plus four intermediate positions: two between middle and 
toe, and two between middle and heel.  These locations 
were notated on seven distinct staff positions.   

The difficulty in performing Tube Mouth Bow String 
derives from the complete independence between the three 
parts that each player must execute. Over time, the players 
became facile with this independence. 

4.3 Comments on form 
Over the course of twelve minutes, the pitches of the 

bowed strings follow a statistically interpolated trajectory 
from low harmonic complexity (unison pitch) to high 
harmonic complexity, then back to unison, resulting in an 
ending rich with cadence-like gestures. Event density of 
talk-box material begins with long sustained vowels and 
ends with dense rhythmic vowel cycles. Pedal moves are 
slow and sparse at beginning and end of the work, reaching 
peak density in the middle. 

The piece specifies rhythmic correlations between pairs 
of players.  The two violins’ pedal glissandi are in rhythmic 
unison but gliss in contrary motion. Viola and 'cello are 
similarly paired.  Violin 1 and viola share the same vowel 
rhythms; violin 2 and 'cello form the other vowel pair. 
These pairings provide internal coherence, which along with 
the large scale shaping of the piece, provides the listener 
with a number of different focal points of attention. 
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Figure 4. Vowel rhythms, bowed strings, and pedal 

positions are notated on separate staves. 

5 Conclusion 
The three pieces described in this paper have very 

different goals and aesthetic directions, including real time 
score generation, digital online performance, instrument 
modeling, and algorithmic composition.  JMSL provides an 
API that is fluid enough to embrace the very different 
musical worlds defined by these pieces. 
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