
Java Music Specification Language, an introduction and
overview

Nick Didkovsky, Philip L. Burk
email: didkovn@mail.rockefeller.edu, philburk@softsynth.com

www.algomusic.com

Abstract
Java Music Specification Language (JMSL) is a new Java-
based development tool for experiments in algorithmic
composition, live performance, and intelligent instrument
design. JMSL is the evolutionary successor to the
Hierarchical Music Specification Language (Polansky,
Rosenboom, and Burk, 1987). While HMSL was Forth-
based, JMSL is written in Java.

JMSL's features include:

x Stylistically neutral core
x Polymorphic hierarchical scheduling
x Device abstraction. JMSL supports Robert

Marsanyi's JavaMIDI, Softsynth's JSyn, MidiShare
(Orlarey and Lequay 1989), and Sun's JavaSound
at a level that hides their implementation.

x An algorithmically extensible common music
notation editor called JScore which features an
algorithmic notation and transformation plugin
API.

x Its Java core. As opposed to a closed system with
a proprietary language, JMSL allows the
programmer to leverage off the vast resources
available to Java developers, including Java's
database connectivity, networking tools, 2D and
3D graphics packages, servlet API, and numerous
third party packages.

x The composer can create stand-alone JMSL
applications or deploy JMSL applets on the web.

x JMSL offers a freely downloadable "Lite" version.
x Runs on Windows, MacIntosh, and Linux platforms

1 Introduction
The goal of the Java Music Specification Language

(JMSL) is to provide an algorithmic music composition and
performance API that is flexible, stylistically neutral, and
portable. To this end, the Java programming language
serves us well. Java is a language that has much to offer
computer music composers including good object oriented
support, extensive auxiliary APIs for networking, graphics
etc., and the ability to run on multiple platforms including
web browsers.

JMSL extends Java with classes for hierarchical

scheduling of composition objects, sequence generators,
distribution functions and other music related tools. JMSL
also features a non-core package called JScore, which is a
programmable music notation editor. JScore supports an
API for adding notes to a score as well as an API to
transform notated musical material.

JMSL's stylistically neutral core, its flexible framework
for hierarchical scheduling and instrument design, and its
ability to notate and transform algorithmically generated
music offers rich new territory for composers to explore.

2 History
The Java Music Specification Language was motivated

by the need for an evolutionary successor to the Hierarchical
Music Specification Language (HMSL). HMSL was
designed and programmed at the Mills College Center for
Contemporary Music by Phil Burk, Larry Polansky, and
David Rosenboom. Some key ideas found in HMSL began
to be ported to the Java programming language by Nick
Didkovsky in 1997.

After the premiere of an interactive piece that served as
a JMSL proof of concept (Didkovsky 1997), JMSL was
both simplified and (r)evolutionized by Phil Burk and
Didkovsky, and taken well beyond a straightforward port of
HMSL.

Didkovsky has taught computer music using JMSL in
his Java Music Systems course at NYU since 1999. JMSL
was officially released in July, 2001, at algomusic.com.

3 The Composable Interface
The notion of hierarchies is a key one in JMSL. A

hierarchy is a network of parent/child relationships. A song
form provides an example, where a parent called mySong
might have four children: verse1, chorus, verse2, chorus. In
JMSL, mySong would be a SequentialCollection.

 mySong
 __________|____________
 | | | |
 verse1 chorus verse2 chorus

Any Java class that implements JMSL's Composable
interface can be put in a JMSL hierarchy. Composables
implement methods for launching themselves on a schedule,
repeating, reporting their finish time back to a parent, and
applying a "timeStretch" factor to their duration.

With this scheme, JMSL can schedule arbitrary events
over time (not just musical ones). For example, MusicJob is
a JMSL class that implements the Composable interface. Its
user-defined action, which is repeated over time, might
draw graphics, print text, send a midi note, harvest
performance statistics, set a value on a JSyn circuit's port,
etc.

The user can define what a MusicJob does by overriding
its repeat() method, as shown below. This MusicJob prints
a message and changes its own scheduling.

public double repeat(double playTime) {
 JMSL.out.println("My playTime is " + playTime);
 return playTime + JMSLRandom.choose(1.0, 5.0);
}

4 Hierarchies of Composables
JMSL hierarchies are created by adding Composables to

JMSL's various collections: SequentialCollection,
ParallelCollection, and QueueCollection. Being
Composables themselves, collections can be nested.

A Sequential Collection launches its children in
sequence, waiting for each to finish before the next is
launched. It can optionally have a user-defined Behavior
assigned to it, which it consults to select the next child every
time it repeats, liberating it from a strictly indexed order.
JMSL's ParallelCollection launches all its children at the
same time, waiting for all to report their finish time before
continuing. A QueueCollection removes a child after
playing it. The excerpt below builds a Sequential
Collection, adds two MusicJobs to it, and launches it.

SequentialCollection seqCol = new SequentialCollection();
seqCol.add(new MusicJobExample());
seqCol.add(new MusicJobExample());
seqCol.launch(JMSL.now());

5 Notes on Hierarchical Scheduling
JMSL uses Java Threads to play multiple Composable

objects in parallel. Timestamps are passed up and down the
hierarchy to ensure that the proper timing relations are
preserved. A Composable is executed by calling launch()
with a beginning time-stamp. A new Thread is created and
the object's run() method is called, which in turns calls
play(time).

The play(time) method of a MusicJob calls the
start(time), repeat(time) and stop(time) methods, which can
be overridden by the composer. The play(time) method
blocks until the job has finished playing. It then returns the
time that it has finished. A SequentialCollection simply has
a repeat(time) method that calls each of its children's
play(time) methods in sequence, passing the returned time

on to the next child. The children execute in the parent's
thread.

A ParallelCollection's repeat(time) method launches
each of its children at the same time, so they each run in
their own thread. It then waits until the last child has
finished executing. It does this by checking for a done flag
for each child, and calling wait() on each child that is not
finished. As each child finishes, it sets its done flag, and
uses notify() to wake up the waiting parent. The children
also pass the parent the time that it finishes. The
ParallelCollection uses the maximum child completion time
as its own completion time.

Starting and running threads in Java has proven to be
very easy. When they finish they exit gracefully. But
unfortunately, stopping them prematurely is problematic.
Sun originally provided suspend(), resume() and stop()
methods for Threads. But these methods were deprecated
because of problems with resources getting unlocked
improperly. So the preferred method for stopping a thread
is to set a flag, and then interrupt() the thread. The thread
will wake up, see the flag and bail out through the normal
path. One can call join() which will block until the thread
exits. Unfortunately, both interrupt() and join() are
seriously broken in Netscape's 4.77 (and earlier) JVM. So
we are still experimenting to find the optimal solution.

6 MusicShape
An ordered table of abstract, multi-dimensional

numerical data is contained in a MusicShape. MusicShape
implements Composable, and so, can be independently
launched, or added to a hierarchy. Melodies could be
stored in a MusicShape, for example, where dimension 0
might stand for duration, dimension 1 might be pitch, and
dimension 2 might be loudness. Data of more conceptual
nature can be stored in a MusicShape as well, like
parameters that feed a complex musical algorithm. It is the
job of JMSL's Instruments and Interpreters to deliver this
interpretation (see below).

The following code shows how to create a MusicShape
and add it to a MusicShapeEditor, which allows real-time,
mouse-based editing (see Fig 1).

// 3 dimensions
MusicShape s = new MusicShape(3);
// add as many elements as you like
s.add(0.50, 10, 100);
s.add(1.50, 9, 101);
s.add(0.75, 12, 102);
MusicShapeEditor se = new MusicShapeEditor();
se.addMusicShape(s);

Each row of data is called an element. Launching the

MusicShape shown above results in an enumeration of its
elements over time, using, in this case, a printing interpreter.

Output:
Interpreter_1 called by ins_0 with { 0.5, 10.0, 100.0, }
Interpreter_1 called by ins_0 with { 1.5, 9.0, 101.0, }
Interpreter_1 called by ins_0 with { 0.75, 12.0, 102.0, }

Figure 1. JMSL's MusicShapeEditor, showing a
MusicShape loaded with 1/f data

7 Instruments and Interpreters
"Instrument" is a JMSL interface which is responsible

for specifying the custom interpretation of MusicShape data.
A MusicShape hands an element to its instrument as an
array of doubles, receives an updated playtime, waits, then
proceeds to the next element. A convenience class called
InstrumentAdapter is included in JMSL, which already
implements Instrument, and allows the programmer to
simply override the play() method.

public double play(double playTime, double timeStretch,
double dar[]) {

double duration = dar[0];
double someOtherValue = dar[1];
// do whatever you want here

 return playTime + duration * timeStretch;
}

An Instrument may optionally contain an Interpreter,

whose interpret() method does the low level data handling
and returns an updated time. The interpreter's interpret()
method is passed a handle to the Instrument that invokes it.

playTime = interpreter.interpret(playTime, timeStretch,
dar, this);

8 Integration with JSyn
JMSL features tight integration with Phil Burk's JSyn

synthesis API (Burk 1998). JMSL provides a SynthClock
which can convert to native JSyn time.

JMSL.clock = new com.softsynth.jmsl.jsyn.SynthClock();

An Instrument which plays a JSyn SynthNote might
implement play() as follows:

public double play(double playTime, double timeStretch,
double[] dar) {
 double dur = dar[0];
 double frequency = dar[1];
 double amplitude = dar[2];
 double hold = dar[3];
 int onTime = (int)JMSL.clock.timeToNative(playTime);
 int offTime = onTime + (int)(JMSL.clock.getNativeRate()
* hold * timeStretch);
 mySynthNote.noteOn(onTime, frequency, amplitude);
 mySynthNote.noteOff(offTime);
 return playTime + dur * timeStretch;
}

Additional support classes include JMSL's
SynthNoteInstrument which allows the user to plug any
predefined JSyn SynthNote into a JMSL Instrument.

9 JScore
JMSL's JScore Notation Package is a programmable

music notation editor. It has a simple, but powerful API for
notating algorithmically generated music, as well as API's
for transforming notes that are already part of a score.

9.1 Notating Algorithmic Music
Adding algorithmically generated notes to a score is

done with the addNote() method. Here we use a 1/f
generator to add a stream of quintuplets to a score. See Fig 2
for notated results.

for (int i=0; i<40; i++) {
// dur, pitch, amp, sustaindur
 Note n = score.addNote(0.20, NoteFactory.MIDDLE_C +
oof.next(), 0.5, 0.10);
// beam groups of 5
 n.setBeamedOut(i % 5 != 4);
}

The duration passed to addNote() is compared to a table
of triplets, quintuplets, septuplets, 11-tuplets, as well as all
non-tuplet, dotted and un-dotted durations from whole note
through 128th note. The closest duration is notated.

Figure 2. JScore notates algorithmically generated music

9.2 Unary and Binary Musical Transforms
JScore provides two abstract classes that apply

transformations to notes selected by the user. The first is
called UnaryCopyBufferTransform, which operates on the
notes in the copy buffer (scrambling or retrograding a
melody for example). The other is
BinaryCopyBufferTransform which operates on two copy
buffers (finding the mutation mean between two melodies
for example (Polansky and McKinney 1991)). The
programmer implements the operate() method of these
classes, providing custom functionality. The source for
ScrambleTransform's operate() method is shown below.

public void operate(CopyBuffer copyBuffer) {
 for (int i=0; i < copyBuffer.size(); i++) {
 Object temp = copyBuffer.elementAt(i);
 int swap = JMSLRandom.choose(copyBuffer.size());
 copyBuffer.setElementAt(copyBuffer.elementAt(swap), i);
 copyBuffer.setElementAt(temp, swap);
 }
}

The results of applying a BinaryCopyBufferTransform
to two source melodies is shown in Fig 3.

Figure 3. Mutation Mean Transform. Source melodies
in top two staves. Result pasted into the third.

A custom transform can be plugged into JScore's menu
with one line of code:

addBinaryCopyBufferTransform(new MutationMeanTransform())

9.3 JSyn and Midi Support
JScore supports orchestras made up of both Midi and

JSyn instruments. It allows the user to import any JSyn
SynthNote by simply typing in its class name. The ports of
the SynthNote are sniffed using Java reflection, and JScore
provides an editor which allows the user to change the
SynthNote's port values, thus controlling its timbre (Fig 4).

Figure 4. JScore opens a dialog for editing public JSyn
ports

9.4 Music Publishing
JScore exports its notation in a format readable by San

Andreas Press’s SCORE Computer Music Typography
System, for professional music publishing.

10 Selected Pieces
“The Monkey Farm” by Didkovsky, 2001. A setting for

stories by CW Vrtacek, read by Valeria Vasilevski, with
music performed by Doctor Nerve. Live and sampled voice
processing software by Didkovsky, Burk, and Marsanyi
using JMSL and JSyn. www.doctornerve.org/monkeyfarm

 “MandelMusic”, by Didkovsky and student
contributors, 1998-present. An applet which sonifies the
mathematics of the Mandelbrot set. JMSL governs the
scheduling and provides the API that allows a variety of

composers to contribute their own JSyn/JMSL instruments.
http://www.punosmusic.com

“Hell Café”, by Nick Didkovsky. Created as part of the
collaborative music theatre production “The Technophobe
and the Madman” (Didkovsky, et al. 2001), “Hell Café” is a
live JMSL/JSyn instrument which generates techno-inspired
music, while processing and scratching live vocals.

“Slim In Beaten Dreamers”, by Nick Didkovsky, 2000.
Commission for the Meridian Arts Ensemble. The first
composition composed entirely in JScore, for brass quintet
and drum set. Commissioned by the Mary Flagler Cary
Charitable Trust, with support from Harvestworks.

11 Future Work
A JMSL class browser and interactive hierarchy builder

would be powerful additions. We would also like to
improve JMSL's MusicShapeEditor, provide it with an API
for transforming ranges of selected MusicShape data
directly within the editor, as well as enabling the importing
and exporting MusicShapes between the MusicShapeEditor
and JScore. JScore shall support more common music
notation requirements, transcribe from live Midi input, and
read/write Midi files. We would like to see JScore output to
the GUIDO notation system as a publishing alternative to
SCORE. We also have plans to integrate JSyn's Wire patch
editor with JScore.

12 References
Burk, P.L., 1998. "JSyn - A Real-time Synthesis API for Java."

Proceedings of the International Computer Music Conference.
International Computer Music Association, pp. 252-255.

Didkovsky, N., 1997. "Schubert's Imp. in Eb Maj Op. 90, arr
Minsky Popolov, a statistical deconstruction/ resynthesis.”
Premiered at The Alternative Schubertiade, American Opera
Projects / Downtown Arts Festival, September 12, 1997.
Released on The Alternative Schubertiade (Composers
Recordings Inc, CRI CD809).

Didkovsky, N., Henderson, T., Perle, Q., Ritter, D., Rolnick, N.,
Rowe, .R., and Vasilevski, V. 2001. "The Technophobe and
the Madman" Live Internet-2 distributed musical, premiered
Feb 20, 2001 at NYU Lowe's Theatre and RPI's iEAR Space.

Orlarey, Y. and Lequay, H., 1989. "MidiShare: A Real Time
Multi-tasks Software Module for MIDI Applications."
Proceedings of the International Computer Music Conference.
International Computer Music Association, pp. 234-237.

Polansky, L., McKinney, M., 1991. "Morphological Mutation
Functions: Applications to Motivic Transformation and a New
Class of Cross-Synthesis Techniques." Proceedings of the
International Computer Music Conference, International
Computer Music Association, pp. 234-241.

Polansky, L., Rosenboom, D., and Burk, P. 1987. "HMSL:
Overview (Version 3.1) and Notes on Intelligent Instrument
Design." Proceedings of the International Computer Music
Conference. International Computer Music Association, pp
220-227.

	1	Introduction
	2	History
	3	The Composable Interface
	4	Hierarchies of Composables
	5	Notes on Hierarchical Scheduling
	6	MusicShape
	7	Instruments and Interpreters
	8	Integration with JSyn
	9	JScore
	9.1	Notating Algorithmic Music
	9.2	Unary and Binary Musical Transforms
	9.3	JSyn and Midi Support
	9.4	Music Publishing

	10	Selected Pieces
	11	Future Work

