
Java Music Specification Language, v103 update

Nick Didkovsky

didkovn@mail.rockefeller.edu
www.algomusic.com

Abstract

Java Music Specification Language (JMSL, Didkovsky,
Burk) is a Java package for algorithmic music composition,
notation, interactive performance, and intelligent
instrument design. Its Java foundation and support for
MIDI and JSyn (Java Synthesizer, Burk) offers the composer
real-time web deployment as well as the creation of stand
alone musical applications. This paper describes a number
of new features that have been added to JMSL and its
notation package JScore, including:

• A flexible transcriber which notates
algorithmically generated music using heuristic
search paths

• MusicXML export of notated scores
• A DimensionNameSpace interface which maps

dimensions to names
• Instrument classes which provide tighter

integration with JSyn
• Plug-in API that allow the composer to add

algorithmic extensions to the notation editor.

1 Introduction
Since its initial release, Java Music Specification

Language has provided a flexible, portable, and stylistically
neutral Java API for the algorithmic composer and
performer. Its Java foundation along with its support for
audio output via MIDI and JSyn enables compositions and
interactive performance instruments to be deployed on the
web and as standalone applications, while offering the
composer the power of a full featured programming
language.

A number of advances have been implemented in the
latest v103 release, available from www.algomusic.com.
Some of these changes extend and improve upon existing
features, while others provide powerful new notions that
extend the core philosophy of JMSL in important ways.

2 Transcribing algorithmically
generated music

JMSL's Score package (JScore) provides the user with
programmable common music notation. The new

Transcriber class offers the composer transcription and
notation of algorithmically generated music.

Consider the problem of notating event durations which
do not conform to traditional durations. The user may have
any number of note events scattered arbitrarily over time,
generated stochastically for example, and wishes to create a
score of this material in common music notation. JMSL's
Transcriber analyzes the timestamps of such musical
material, and loads a Score with a transcription.

The input to JMSL's Transcriber is a MusicShape (an
ordered list of timestamped musical events) and a list of
time signatures and tempos which provide a template for the
transcription. The output is a notated Score. The power of
the transcriber lies in its generality and customizability.

2.1 Customizing the transcriber
Besides providing a template of time signatures and

tempos, the composer can customize the beat subdivisions
considered by the transcriber (ie triplets, quintuplets, etc).
The user can use a default list of beat subdivisions, or may
specify precisely which beat subdivisions the transcriber
may consider (allowing for example quarter note triplets,
eighth note quintuplets, sixteenth note septuplets, and
disallowing all others). All such “BeatDivisionSchemes”
under consideration are contained in a
BeatDivisionSchemeList. By adding BeatDivisionSchemes
to this master list, the user can customize the transcriber,
which will limit its analysis to those in the list. Excluded
subdivisions are not considered.

Additional rhythmic customization can be achieved by
specifying the minimum number of elements to be present
for a particular BeatDivisionScheme to be considered. For
example, one might specify that the minimum number of
notes in an eighth note triplet be three, eliminating the
possibility of a triplet containing two notes. One can
massage this threshold and in general, specify a minimum of
any value between 1 and N notes for an N-subdivision.

A powerful call-back mechanism is provided during the
transcription process. The composer can create a
TranscriberListener and register it with the Transcriber.
Every time a Note is added to the Score, the listener is
notified. This can been used to add algorithmically
generated lyrics, slurs, dynamics, and markings to the Note.

Figure 1. Exponentially distributed musical events notated

by JMSL's Transcriber. The MusicShapeEditor in the
bottom half of the figure shows the duration in seconds of

the five events that were transcribed.

2.2 Heuristic Search for path of minimum
error, some technical details

The transcriber's goal is to discover a path of
BeatDivisionSchemes that expresses the measure's events
with minimum error. An example of a winning path
through a measure of 4/4 might be quarter note triplets
spanning the first two beats of the measure, followed by a
eighth note triplet for the third beat, ending with a single
quarter note. The search space of all possible paths through
a measure's beats grows quickly even when a modest
number of possible BeatDivisionSchemes are considered.
By default JMSL considers 21 distinct
BeatDivisionSchemes. A measure of 4/4 yields a total of
214=194,481 possible paths. To find the minimum cost path
efficiently, the transcriber limits this search space by
following a heuristic search strategy. Instead of expanding
all search paths for every beat, it expands at each beat only
the one path which is ranked with minimum error. It
expands this lowest cost path into the next beat by building
multiple copies of it, each with a new BeatDivisionScheme
at its head. After recalculating error of these new paths as
well as all old paths, it resorts and again chooses the
minimum cost path for expansion into the next beat. An old
path might then have the lowest error, which promotes it for
expansion. This process is repeated until the last beat is
reached and an overall winning path is determined. Note
that backtracking is implemented here, since a path which
did not promise minimal error early in the search may win
in the end.

3 MusicXML support
MusicXML is an XML standard defined by Recordare

LLC (Good) that describes common western music notation.
JMSL's Score package now exports scores in MusicXML
format providing a bridge to a variety of commercial music
applications. Recordare's Dolet plug-in for example, imports
MusicXML files directly into Finale for professional quality
publishing. Currently, the Dolet plug-in runs on Windows

platforms only. Recordare has announced that an OS X
version is under development.

The MusicXML file exported by JScore preserves tempo
and time signature changes, marks, dynamics, crescendos,
beaming, etc. JMSL's ability to generate algorithmic music,
to notate it with its transcriber, and then have it rendered in
Finale offers the composer a solution path for getting
algorithmically generated music onto the printed page.

Figure 2. The JMSL Score pictured in the top half of the

figure was exported in MusicXML format and loaded into
Finale via the Dolet plug-in. The Finale excerpt is pictured

in the bottom half of the figure.

4 Dimension Name Spaces
A new JMSL interface called DimensionNameSpace

enables new tools and an enhanced runtime environment.
One of the designs that JMSL inherited from HMSL
(Polansky, et al) is MusicShape. Each row of MusicShape
is an array of double[] called an element. Each column is a
dimension. MusicShape data is sonified or otherwise
interpreted by JMSL Instruments. MusicShape has always
provided the user with the ability to assign names to its
dimensions, such as "duration" for dimension 0, "pitch" for
dimension 1, etc. The new DimensionNameSpace interface
provides an abstract definition of this mapping, outlining
methods that assign and retrieve integer/name relationships.

With the DimensionNameSpace interface, mapping
dimensions to names is no longer unique to MusicShape.
For example, Instrument now contains a
DimensionNameSpace field which it may use to access
performance data by name instead of by array position.
Later we will see how this gives rise to powerful new JSyn
support classes.

Besides the convenience of being able to address a
dimension index by name, the DimensionNameSpace
interface enables the creation of general utilities like
DimensionNameSpaceEditPanel which builds an editor
dynamically according to the DimensionNameSpace of the
object passed in.

Figure 3. This DimensionNameSpaceEditPanel configured

itself at runtime to edit an object’s synthesis parameters.

4.1 Translating between name spaces
The DimensionNameSpaceTranslator translates an array

of double from one DimensionNameSpace to another,
preserving data by matching common names. For example,
if one DimensionNameSpace had dimension 4 mapped to
"cutoff" and another DimensionNameSpace mapped the
same name to dimension 5, then translating from the former
to the latter would return an array where the value in
dimension 4 of the source would be copied into dimension 5
of the target. MusicShape now uses a
DimensionNameSpaceTranslator to mediate between its
own DimensionNameSpace and that of its Instrument. This
ensures that the data it passes to the Instrument conforms to
the expectations of the DimensionNameSpace contained in
the Instrument. This translation feature affords the
composer the flexibility of passing abstract data around to a
variety of Instruments, preserving as much of its semantics
as possible (for example, sharing the same MusicShape data
between two different instruments which have a dimension
in common named “attackRate”).

4.2 Runtime control of all synthesis parameters
The first JMSL release provided a manageable but

somewhat inconvenient path to build a JMSL Instrument
that provided timbral control over a JSyn SynthNote. This
involved using a code generator class and compiling the
Java source it exported.

The current JMSL release offers a runtime approach that
is much simpler and much more powerful. The new
SynthNoteAllPortsInstrument class is passed a JSyn
SynthNote class name at runtime and automatically builds a
DimensionNameSpace and a voice allocator for that
SynthNote. Each call to Instrument.play() provides control
over all input ports of the SynthNote. Together with the new
Instrument.update() method, which updates parameters
without retriggering a SynthNote’s “on” stage, JMSL now
offers intimate control of synthesis, supporting note on/off
events as well as continuous control.

5 Music Devices
New to the current JMSL release is the MusicDevice

interface. It consists of three methods: open(), edit(), and
close(), and provides a useful abstraction layer through
which JMSL's output devices such as JSyn and Midi can be
defined and managed. JSynMusicDevice and
MidiMusicDevice are singleton classes that implement
MusicDevice. When open()'ed, they register themselves
with JMSL which simply sees them as abstract
MusicDevices. This permits convenience methods such as
JMSL.closeAllMusicDevices() which calls close() on all
registered MusicDevices (typically called at the end of a
piece). A MusicDevice’s edit() method returns a custom
panel which can be used to set startup parameters unique to
the MusicDevice’s implementation.

Figure 4. The MusicDevice interface includes an edit()

method which returns a device-dependent GUI. Editors for
JSynMusicDevice and MidiMusicDevice are shown here.

Among the benefits of this general approach is

streamlining. For example, JScore's three Orchestra
subclasses, JSynOrchestra, MidiOrchestra, and
HybridOrchestra, have disappeared. Now there is only one
Orchestra class to which Instruments of any type can be
added. The Instruments themselves know what their
MusicDevices are, and so, can be edit()'ed and open()'ed
without other objects needing to have access to their
implementation. Therefore, a well designed Instrument sets
its preferred MusicDevice in its constructor, as is done for
example, in the constructor of TunedSynthNoteInstrument
which calls setMusicDevice(JSynMusicDevice.instance()).
An Instrument's constructor should not assume the device is
opened, and so, it should do all its device-specific building
in a method called buildFromAttributes(). This enables the
programmer to create a new Instrument object of any type,
query it for its MusicDevice, optionally open a device
editor, open the device itself, build the instrument, and
continue with music creation.

6 Mixers
The Mixer interface describes general methods for

mixing instrument output. Methods such as
addInstrument(), setFaderMute(), start(), and stop(),
describe common operations performed on a virtual mixer.
Well designed instruments define their preferred mixer in
their constructor, such as
setMixerClassName("com.softsynth.jmsl.jsyn.JSynMixer")
or
setMixerClassName("com.softsynth.jmsl.midi.MidiMixer").
JMSL provides Midi and JSyn specific mixers but
encourages the use of the general JMSLMixerContainer.
Adding an Instrument to a JMSLMixerContainer queries the
instrument for the class name of its preferred Mixer, and
creates one if necessary. JMSLMixerContainer can
therefore manage a heterogeneous collection of Midi and
JSyn instruments by instantiating submixers for them.
JMSLMixerContainer builds a GUI of Pan/Amp panels, one
for each instrument. Any class that implements Mixer can
be managed by JMSLMixerContainer, providing the
programmer with the opportunity to define new Mixers for
future sound engines and other output devices.

Figure 5. JMSLMixerContainer manages a hybrid

collection of device-dependent Mixers. JSyn and MIDI
instruments have been added to the mixer whose GUI is

shown above.

7 Plug-ins
JMSL currently ships in a package that makes it

convenient to double click on an icon, open a JScore, and
begin editing in common music notation. The distribution
also contains a folder called jmsl_plugins. User defined Java
class files can be dropped into this folder. When Score
starts up it scans jmsl_plugins for supported classes and
builds hierarchical menus for these. Supported classes
include JSyn SynthNotes and signal processors (which are
SynthNotes with a SynthInput named "input"), Instruments,
Unary and Binary CopyBufferTransforms, Score Reporters,
and NotePropertiesTransforms. Composers can develop
plug-ins themselves and customize a very personal set of
compositional tools. This new feature also gives third party
developers a uniform deployment target for plug-in
development and distribution.

8 Web deployment of Scores
The JMSLScoreApplet class offers simplified

deployment of notated scores on the web. The user passes

the filename of a score as the “name” parameter to an applet
tag which also specifies JMSLScoreApplet as its code
parameter and jmslclasses.jar as its archive parameter. The
applet loads and displays the score when the page is loaded
into a web browser. Browsers with the JSyn plug-in
installed can perform scores with CD quality audio directly
on the client computer. The end-user can edit, copy, paste,
add and delete notes, and interact in many other ways with
the score, including using JMSL Transforms to develop and
change material. Support for uploading scores to a server
could be implemented in a straightforward way by
subclassing JMSLScoreApplet. Since JScore has all the
power of JMSL beneath it, self-generating, self-examining,
and self-modifying scores can be deployed.

Score files can now be saved and loaded in ZIP format,
making the download of even very lengthy scores quick and
manageable.

9 Conclusion
JMSL has matured since its first release, offering a more

streamlined and efficient API for composing algorithmic
music and designing interactive music performance systems.
Its new transcription capabilities and MusicXML support
offers the composer a path that begins with arbitrarily
complex musical algorithms and integrates with
professional music publishing tools. Its support for the JSyn
synthesis API has been simplified and offers algorithmic
control and scheduling of user-designed synthesis patches.
The abstraction of core notions such as dimension name
spaces, mixers, and music devices benefit the current API
and pave the way for growth. Its new plug-in API offers the
composer rich and personal customization of a composition
environment, and provides a standardized path for third
party plug-in development.

10 References
Burk, P.L., (1998). "JSyn - A Real-time Synthesis API for Java."

Proceedings of the International Computer Music Conference.
International Computer Music Association, pp. 252-255.

Didkovsky, N., Burk, P.L., (2001). "Java Music Specification
Language, an introduction and overview" Proceedings of the
International Computer Music Conference. International
Computer Music Association, pp. 123-126.

Polansky, L., Rosenboom, D., and Burk, P. (1987). "HMSL:
Overview (Version 3.1) and Notes on Intelligent Instrument
Design." Proceedings of the 1987 International Computer
Music Conference. International Computer Music Association,
San Francisco, pp 220-227.

Good, M., (2001). “MusicXML for Notation and Analysis. In The
Virtual Score: Representation, Retrieval, Restoration”
Computing in Musicology 12. MIT Press, pp.113-124

